A phase code for memory could arise from circuit mechanisms in entorhinal cortex
نویسندگان
چکیده
Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition.
منابع مشابه
Neuroprotective Effect of Gallic Acid on Memory Deficit and Content of BDNF in Brain Entorhinal Cortex of Rat’s Offspring in Uteroplacental Insufficiency Model
Introduction: Uteroplacental insufficiency (UPI) causes neurodevelopmental deficits affecting the intrauterine growth restricted (IUGR) offspring. This study aimed to analyze the effects of Gallic acid (GA) on memory deficit and brain-derived neurotrophic factor (BDNF) content in entorhinal cortex of UPI rat models. Methods: In this experimental study, 40 pregnant Wistar rats were randomly div...
متن کاملGrid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting.
This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed-modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in ...
متن کاملEarly and late consolidation and reconsolidation of memory in the prelimbic cortex
Rats can learn to forage among olfactory cues to associate one with reward in only 3 massed trials. The learning is achieved in less than 10 min and results in a memory trace lasting at least 1wk week. To study the neuro-anatomical circuits involved in the memory formation we used immunoreactivity to the immediate early gene c-fos as a marker for neuronal activity induced by the learning. The p...
متن کاملA Circuit-Level Model of Hippocampal Place Field Dynamics Modulated by Entorhinal Grid and Suppression-Generating Cells
Hippocampal "place cells" and the precession of their extracellularly recorded spiking during traversal of a "place field" are well-established phenomena. More recent experiments describe associated entorhinal "grid cell" firing, but to date only conceptual models have been offered to explain the potential interactions among entorhinal cortex (EC) and hippocampus. To better understand not only ...
متن کاملLinking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory
The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2009